"Artificial intelligence has seen a number of breakthroughs in recent years, with games often serving as significant milestones. A common feature of games with these successes is that they involve information symmetry among the players, where all players have identical information. This property of perfect information, though, is far more common in games than in real-world problems. Poker is the quintessential game of imperfect information, and it has been a longstanding challenge problem in artificial intelligence. In this paper we introduce DeepStack, a new algorithm for imperfect information settings such as poker. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition about arbitrary poker situations that is automatically learned from self-play games using deep learning. In a study involving dozens of participants and 44,000 hands of poker, DeepStack becomes the first computer program to beat professional poker players in heads-up no-limit Texas hold'em. Furthermore, we show this approach dramatically reduces worst-case exploitability compared to the abstraction paradigm that has been favored for over a decade."
read more: [1701.01724] DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker